
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANS. MED. IMAG., VOL. 0, NO. 0, MONTH YEAR 1

Robustness of quantitative compressive sensing
MRI: The effect of random undersampling patterns

on derived parameters for DCE- and DSC-MRI
David. S. Smith, Member, IEEE, Xia Li, James V. Gambrell, Lori R. Arlinghaus, C. Chad Quarles,

Thomas E. Yankeelov, and E. Brian Welch, Member, IEEE

Abstract—Compressive sensing (CS) in Cartesian magnetic
resonance imaging (MRI) involves random partial Fourier ac-
quisitions. The random nature of these acquisitions can lead to
variance in reconstruction errors. In quantitative MRI, variance
in the reconstructed images translates to an uncertainty in the de-
rived quantitative maps. We show that for a spatially regularized
2×-accelerated human breast CS DCE-MRI acquisition with a
1922 matrix size, the coefficients of variation (CoVs) in voxel-level
parameters due to the random acquisition are 1.1%, 0.96%, and
1.5% for the tissue parameters Ktrans, ve, and vp, with an average
error in the mean of -2.5%, -2.0%, and -3.7%, respectively. Only
5% of the acquisition schemes had a systematic underestimation
larger than than 4.2%, 3.7%, and 6.1%, respectively. For a 2×-
accelerated rat brain CS DSC-MRI study with a 642 matrix
size, the CoVs due to the random acquisition were 19%, 9.5%,
and 15% for the cerebral blood flow and blood volume and
mean transit time, respectively, and the average errors in the
tumor mean were 9.2%, 0.49%, and -7.0%, respectively. Across
11 000 different CS reconstructions, we saw no outliers in the
distribution of parameters, suggesting that, despite the random
undersampling schemes, CS accelerated quantitative MRI may
have a predictable level of performance.

I. INTRODUCTION

QUANTITATIVE dynamic magnetic resonance imaging
(MRI) uses an injected contrast agent (CA) coupled with

dynamic imaging to illuminate tissue properties. Two of the
most common methods are dynamic contrast enhanced MRI
(DCE-MRI) and dynamic susceptibility contrast MRI (DSC-
MRI).

DCE-MRI involves the injection of a paramagnetic CA,
such as Gd-DTPA (gadopentetate dimeglumine), to alter the T1
longitudinal magnetization relaxation rate of the tissue while
acquiring serial images as the contrast enters and exits the
field of view. This is often used to interrogate the vascular
status of tumors [5], [34], and DCE-MRI has successfully
been applied to assess vascular characteristics in both pre-
clinical and clinical settings (see, e.g., [13], [21], [24], [35]).
Quantitative DCE-MRI seeks to derive, for each voxel, three
pharmacokinetic parameters: Ktrans, ve, and vp, which de-
scribe the contrast agent extravasation rate, the extravascular
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extracellular volume fraction, and the plasma volume fraction,
respectively.

DSC-MRI involves injection of a CA, such as Gd-DTPA or
iron oxide nanoparticles, to dynamically alter the T ∗2 transverse
relaxation rate of tissues (see, e.g., [11], [27], [29], [30]). DSC-
MRI is often used to assess the hemodynamic status of tissues.
Quantitative DSC-MRI seeks to derive three hemodynamic
parameters: the cerebral blood flow (CBF), cerebral blood
volume (CBV), and mean transit time (MTT).

Quantitative dynamic MRI requires (1) high temporal res-
olution to capture the rapid contrast changes, (2) high spatial
resolution to detect small features and accurately delineate
boundaries, and (3) high signal-to-noise ratios to reduce uncer-
tainties in the fits of quantitative model parameters. With such
severe constraints, quantitative dynamic MRI could benefit
greatly from lower data acquisition requirements. Clinically,
faster sampling could allow accurate arterial input function
estimation or application of tracer kinetic models that require
higher temporal resolution than is currently available. Also,
tumor heterogeneity analyses [17] could benefit if SNR could
be increased without compromising spatial resolution.

A compressive sensing (CS) MRI [23] reconstruction is a
constrained reconstruction in which the resulting image is cho-
sen such that it has the sparsest representation possible in some
basis while still being consistent with the collected Fourier
data. CS can dramatically accelerate MRI data acquisitions,
with, typically, an insignificant image quality loss [23]. To
date, CS MRI has been tested mostly in applications relying
on image morphology (e.g. [28], [31]). Quantitative CS MR
is beginning to be explored (e.g. [6], [16], [32]), but no work
has yet addressed the additional uncertainty in quantitative
parameters due to random sampling.

Test-retest studies are one way to characterize intrapa-
tient variance in derived quantitative maps. Such studies for
DCE-MRI have found coefficients of variation (CoVs) for
Ktrans and ve of 7.7% and 6.2%, respectively, in glioma [12]
and 29% and 9%, respectively, in a variety of cancers [8]. A
similar study for DSC-MRI [15] found a CoV of 12% in the
CBV, with a correlation between scans of 0.84 (p < 0.0001).

Here we present a framework for exploring the variance that
the random nature of the partial Fourier acquisition of CS MRI
introduces into the derived parameters for quantitative DCE-
and DSC-MRI.
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II. MATERIALS AND METHODS

A. Human DCE-MRI

1) Data: Ten patients with locally advanced breast can-
cer were enrolled in an ongoing clinical trial. The patients
provided informed consent, and the study was approved by
the ethics committee of our Institute. DCE-MRI data were
acquired using a Philips 3T Achieva MR scanner1 using a
four-channel receive bilateral breast coil.2 For each patient,
two data sets were sequentially acquired: one for constructing
a T1 map and one for the DCE-MRI analysis.

Data for constructing a T1 map were acquired using a 3D
gradient echo multiple flip angle approach with TR = 7.9 ms,
TE = 1.3 ms, and flip angles of 2 to 20 degrees in two degree
increments. Uniform flip angle spacing was used instead of
an optimized set [33] because of the broad range of tissue T1
values found in typical tumor tissue. The acquisition matrix
was 192 × 192 × 20 (full-breast) over a sagittally oriented
field of view of 22 cm × 22 cm × 10 cm. Scan time was just
under three minutes.

The dynamic sequences used identical parameters but with
a single flip angle of 20 deg. Each 20-slice set was collected
in 16.5 seconds at 25 time points for approximately seven
minutes of scanning. A catheter placed within an antecubital
vein delivered 0.1 mmol/kg of the contrast agent Magnevist3

at 2 mL/s (followed by a saline flush) via a power injector4

after the acquisition of three baseline dynamic scans for the
DCE study. An individual AIF was obtained from the axillary
artery of each patient as previously reported [19].

2) Analysis: Data collected at multiple flip angles for the
T1 map were fit using a trust-region-reflective, nonlinear least
squares algorithm (Matlab’s lsqcurvefit) to the gradient echo
signal intensity equation

S(t) = S0 sinα
1− exp [−TR/T1(t)]

1− cosα exp [−TR/T1(t)]
, (1)

where α is the flip angle, S0 is a constant describing the
scanner gain and proton density, and we have assumed that
TE � T ∗2 , where TE is the echo time.

To derive pharmacokinetic parameters, T1 can be related
linearly to the concentration of CA in the tissue, Ct(t), by

1/T1(t) = r1Ct(t) + 1/T1(0), (2)

where T1(0) is the T1 of the tissue before CA administration
(obtained from the T1 mapping sequence), T1(t) is the T1
relaxation during the dynamic sequence, and r1 is the CA
relaxivity. The extended Kety relationship [18] is then used to
derive tissue parameters:

Ct(t) = vpCp(t) +Ktrans ×∫ t

0

Cp(t′) exp
[
−Ktrans(t− t′)/ve

]
dt′, (3)

where Ktrans is the CA extravasation rate constant, ve is the
extravascular extracellular volume fraction, vp is the plasma

1Philips Healthcare, Best, The Netherlands
2Invivo, Inc., Gainesville, FL
3Bayer, Wayne, NJ
4MEDRAD, Warrendale, PA

Fig. 1. Sagittal slice from the full breast DCE data set (anterior-posterior
direction is left-right, superior-inferior is up-down). The tumor is indicated
by the arrow and is brighter than the surrounding tissue after having been
perfused with blood containing the Gd contrast agent. The bright region at
the lower right is an artifact due to the heart.

fraction, and Cp(t) is the concentration of CA in blood plasma.
Cp(t) is known as the arterial input function (AIF).

For each of the ten patients, three DCE parameters were
derived for each voxel in the tumor using both the full data
set and a 2×-accelerated CS data set. The 2× CS data set was
generated by randomly selecting phase encodes according to
the prescription below in §II-C. The tumor-wide means and
voxel-level correlation of the derived parameters from the full
and CS data were examined, and the median data was selected
for further study. Figure 1 shows an example slice from the
full data set of the selected patient.

The second phase of the study involved performing retro-
spective CS acquisitions on the selected “typical” data set.
Only 2× CS acceleration was considered. The fully sampled
Fourier data was generated from reconstructed magnitude
images. The protocol used for this study captured only a
partial echo, so the full complex reconstructed images were
not available. One thousand realizations of a 2× phase encode
scheme for the image resolution (1922) were generated. This
subsampling scheme was then applied to the full data set,
and the resulting partial data set was reconstructed with a
2-D Cartesian CS MRI reconstruction scheme. This scheme
is explained in detail in §II-C. DCE parameter triplets were
then derived for each voxel for each of these 1000 CS recon-
structions, and the resulting values compared to the parameters
derived from the full data set.

B. Rat DSC-MRI

1) Data: DSC-MRI data was acquired using a Varian 4.7 T
small animal MR scanner5 equipped with a 63 mm quadrature
birdcage coil. During the experiment, a warm flow of air
over the animal maintained the body temperature at 37◦ C.
The respiratory rate was monitored throughout the experiment
and maintained at 40–60 breaths per minute. After tumor

5Varian Medical Systems, Palo Alto, CA
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Fig. 2. Example image from the full DSC data set. The brain is the bright
central object. A slice through the middle of the brain was used, and the entire
brain was used for ROI analysis.

localization, a gradient echo planar (EPI) pulse sequence was
used to acquire DSC-MRI data with the following parameters:
TR = 0.5 sec, TE = 16.1 ms, FOV = (40 mm)2, slice thickness
= 1.5 mm, matrix = 642, and a flip angle = 65◦. At 60 seconds
into the image acquisition a 2.5-mg/kg bolus of iron oxide CA,
Molday ION,6 was administered intravenously via a jugular
catheter. All studies adhered to our institution’s animal care
and use committee. Figure 2 shows an example axial slice
through the brain from the full DSC data set.

2) Analysis: The CA concentration time curves for each
voxel were quantified with the assumption of a linear relation-
ship between CA concentration and the change in the gradient
echo transverse relaxation rate, ∆R∗2. The ∆R∗2 times were
computed as the logarithm of the MRI signal intensities:

∆R∗2 = (−1/TE) log[S(t)/S0], (4)

where S(t) is the post-contrast injection signal intensity
and S0 is the pre-contrast signal. A tracer kinetic analysis
of the concentration time curves was used to compute the
hemodynamic parameters as previously described [26]. The
arterial input function was computed as the average transverse
relaxation rate time curves over three voxels located near
branches of the middle cerebral artery. Tissue residue functions
were derived by deconvolving the tissue concentration time
curves with the AIF using singular value decomposition [26].
The CBF was computed as the peak of the residue function,
the CBV was determined as the area under the concentration
time curves and the MTT was taken as the ratio of the CBV
to CBF according to the central volume theorem [26].

Instead of 1000 CS acquisitions, as in the DCE-MRI
study, we generated 10 000 different random CS DSC-MRI
acquisitions and applied them retrospectively to the full 642

data set. The reasons for this will be explained in §III.
Each of the 10 000 partial data sets was reconstructed with
the CS MRI reconstruction scheme described in §II-C. DSC
parameter triplets were then derived on one slice for each voxel

6BioPAL, Worcester, MA

containing healthy brain tissue for each CS reconstruction, and
the resulting values were compared to the parameters derived
from the full data set.

C. Compressive Sensing Reconstruction

Compressive sensing [1], [7] can accelerate MRI data ac-
quisitions by sampling fewer spatial frequencies than required
to satisfy the Nyquist-Shannon theorem. The missing data
are iteratively reconstructed with a regularized least squares
algorithm in which, typically, the gradient of the reconstructed
image serves as a regularizer. Specifically, the reconstructed
image u in compressed sensing MRI is usually a solution to
the unconstrained minimization problem

arg min
u

‖Su‖1 +
λ

2
‖Fu− d‖22, (5)

where S is a sparsity transform, such as a wavelet decomposi-
tion or the image gradient, F is the partial Fourier measurement
operator, d are the scanner-collected Fourier coefficient data,
and λ controls the relative weighting of the two norm terms,
defined as ‖x‖1 ≡

∑
i |xi| and ||x||22 ≡

∑
i x

2
i . Note that

the CS reconstruction problem, as opposed to traditional least
squares problems with linear regularizers, is non-linear and
has no closed-form solution.

In a Cartesian CS MRI acquisition scheme, the ability to
undersample the Fourier domain is restricted to randomly
omitting 1-D phase encodes, corresponding to entire rows
from the Fourier matrix in 2-D or 3-D acquisitions. In the
reconstructions presented here, the lowest spatial frequencies
are fully sampled, while at higher frequencies the sampling
density of phase encodes follows |k|−0.5, where k is spatial
frequency. The cutoff between uniform sampling and random
sampling is chosen such that the total number of phase encodes
in the scheme is the number determined by the accelera-
tion. The |k|−0.5 distribution of spatial frequency samples
was empirically chosen to improve image contrast while not
sacrificing too much spatial detail. A centrally biased sampling
pattern improves contrast by including more of the low spatial
frequencies that contain most of the image power (see, e.g.,
Fig. 8 of [23]). During the reconstruction, an image consistent
with the measured Fourier data is sought that sparsifies its
isotropic gradient, defined as

∇u =
√

(ui,j − ui,j−1)2 + (ui,j − ui−1,j)2, (6)

with boundaries treated periodically and each slice treated
independently. It is important to note that this transform does
not have a simple relationship to the desired pharmacokinetic
parameters, so it is not clear that a time independent CS MRI
reconstruction will retain the necessary dynamic information
to retrieve accurate DCE parameters. Additionally, our data
sets are relatively low resolution (1922 and 642 matrix sizes),
so the images are consequently less compressible under a
gradient transformation. This means total variation normal-
ized by the number of voxels will be larger, and, since the
reconstruction problem is being posed as an unconstrained
minimization problem, the data fidelity will be compromised
more in order to produce a given level of decrease in the TV.
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The CS reconstruction here was performed using a non-
convex, total variation (TV) regularized Cartesian split Breg-
man algorithm [10] modified to run on a GPU workstation
using Jacket 1.6.07 and Matlab R2010b8. The non-convexity
comes from the use of the `1/2 quasi-norm instead of the
typical `1 norm of the gradient according to the prescription
of [3]. Thus the optimization problem as implemented here
becomes

arg min
u

‖Su‖1/21/2 +
λ

2
‖Fu− d‖22, (7)

where ‖x‖1/21/2 ≡
∑

i

√
|xi|.

As shown in [3], this modification to the basic CS MRI
reconstruction algorithm improves image quality and reduces
artifacts. With a non-convex optimization problem, however,
the reconstructed image is no longer assured to be a global
optimum, but for quantitative MRI a solution that maintains
sufficient fidelity of the model parameters is all that is re-
quired. In fact, this paper is an effort to explore under what
circumstances this criterion is being met. We chose λ = 20
empirically in order to reduce the spatial smoothing and stair
stepping that can occur with TV minimization.

D. Statistical Analysis

Concordance correlation coefficients (CCCs; [20]), region-
of-interest (ROI) means, and coefficients of variation (CoVs)
were used as the measures of agreement between sets of
quantitative parameters derived from the fully sampled and
undersampled data. CCCs measure the extent to which the
three parameters for a given voxel in the CS reconstruction
are equal to of those in the fully sampled data set. CoVs
were defined as the ratio of the standard deviation of the CS
parameter sets to their means and given in percent.

III. RESULTS

A. Human Quantitative DCE-MRI

In CS MRI, a compromise is struck between fidelity to the
acquired Fourier data and the sparsity of the reconstructed
image in some chosen transform domain. This leads to an
additional source of uncertainty in the reconstruction problem.
One definition of “well behaved” CS subsampling could be
that this additional level of uncertainty is independent of the
particular random Fourier sampling scheme chosen.

Figure 3 shows histograms of CCCs and tumor means for
Ktrans, ve, and vp from the 1000 CS DCE-MRI data sets.
All three parameters have similar CCCs and tumor means
across all 1000 acquisition schemes, suggesting that despite the
random nature of the phase encode scheme the end results—
the quantitative parameters—are consistent.

As is to be expected when decimating magnitude images,
the low acceleration factor, 2×, used here produces excellent
agreement with the full data set for almost all reconstructions.
The significant new feature of these results is the variance in
agreement across the range of random undersampling patterns.
The horizontal lines above the histograms show the 5-95%
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Fig. 3. Results of 1000 different simulated CS DCE-MRI acquisitions. Above
each histogram, the horizontal line shows the 5–95% quantile in gray, the 25–
75% in black and the mean by the vertical tick. For tumor mean parameters,
the open diamond above the histograms shows the mean parameter value for
the model that used the full data set. All three parameters are systematically
underestimated by a few percent on average. The variance is small and
the distributions of results have a normal character, which means that CS
undersampling has a relatively predictable outcome for this experiment.

range in gray, the 25-75% range in black, and the mean by
the vertical tick. For tumor means, the mean derived from the
full data set is indicated by the open diamonds. For 95% of the
acquisition schemes, the CCCs for Ktrans, ve, and vp were
greater than 0.86, 0.86, and 0.85, respectively, and the tumor
means of Ktrans, ve, and vp were underestimated by less than
4.2%, 3.7%, and 6.1%, respectively. The CoVs were 1.1%,
0.96%, and 1.5%, respectively.

For this 1922 data set, we used a 2× undersampling and
a |k|−0.5 probability distribution to choose the random phase
encode subsets. A fully sampled center window of width 16
was always chosen to ensure that the lowest frequencies were
always acquired, which increases total signal. This left 80
phase encode lines left to be chosen and 176 unused frequen-
cies from which to take them. Thus there are theoretically(
192−16
96−16

)
= 2.8× 1051 unique random phase encode schemes

possible. The nearly normal character of the distributions after
just 1000 trials, however, suggests that the results here are
representative of the full gamut of acquisitions.

It is evident that despite the small variance in tumor means
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Fig. 4. Example of intensity loss in a bright object on a dark background.
The test images are shown above a horizontal cut through the center of
the images. The CS reconstruction retrieves most of the intensity, but some
underestimation of the central peak and overestimation of the periphery
remains.

there is a systematic underestimation. In fact, almost every
CS reconstruction underestimates all three parameters. This is
likely due to a slight loss of contrast in the tumor, perhaps
due to the gradient shrinkage used in the CS reconstruction.

Figure 4 demonstrates the nature of the contrast loss
inherent in a CS reconstruction. The original 2002 image
consists of circular object with a Gaussian intensity profile.
Undersampling by a factor of six according to the same |k|−0.5
sampling density and then filling the missing data with zeros
produces periodic errors in the phase encode direction and a
significant loss of contrast in the central region. In addition
to the local intensity loss, the total image intensity must be
less than before because power was lost in the Fourier domain
and power is conserved by a Fourier transform according to
Parseval’s theorem. The nonconvex CS reconstruction retrieves
most of the power in the object, but there is still a small
underestimation of the peak and some stair stepping on the
edges due to the gradient minimization. The leakage of inten-
sity away from the central, bright object is also evident by the
brighter tails of the horizontal cuts in the CS and zero-filled
cases.

If the inverse image were used in the experiment in Fig.
4, one can easily demonstrate that the optimization problem
would produce an overestimation of the intensity in a small
dark region. Any quantitative CS MRI that measures properties
of regions that are either much brighter or much darker than
the surrounding image could be affected by such intensity
under- and over-estimations, respectively. In particular, an
enhancing DCE-MRI voxel-intensity time course should be
flattened relative to that of a neighboring unenhanced voxel.

To see what effect the systematic parameter underestimation
of the CS reconstructions would have on the voxel-intensity
time courses, we modeled two time courses: one using the

DCE parameters from the full data set and one with all
parameters decreased by 3%, which is representative of a
typical CS data set from Fig. 3. Figure 5 shows the results
of this model. The upper panel of Fig. 5 shows the two
time courses overlain. The small underestimate of the model
parameters corresponds into a similar error in the intensity
time course.

To attempt to elucidate this behavior, we present in the
lower panel of Fig. 5 a simple linear model for the differ-
ence between the CS and full time course along with the
actual difference. The linear model assumes that, at the first
time point, there is no difference between the tumor and
the background, while at the peak of the time course the
intensity is maximally underestimated, with a linear change
in underestimation in between. The agreement between the
curves is not perfect, but the general character is the same.
This suggests that the intensity underestimation of a bright ROI
by the CS reconstruction is in fact dependent on the relative
contrast of the ROI. Also, the magnitude of underestimation
of the peak intensity of the time course is 1.5%, which is
of the same order as the underestimation of the derived DCE
parameters (3%).

B. Rat Quantitative DSC-MRI

Figure 6 shows histograms of 10 000 different simulated
CS DSC-MRI parameters sets. The horizontal lines above the
histograms show the 5-95% range in gray, the 25-75% range
in black, and the mean by the vertical tick. For tumor means,
the mean derived from the full data set is indicated by the open
diamonds. For 95% of the acquisition schemes, the CCCs for
CBF, CBV, and MTT were greater than 0.78, 0.85, and 0.21,
respectively, and the means of the tumor means for were within
9.2%, 0.49%, and -7.0%, respectively, of those for the full data
set. The CoVs were 19%, 9.5%, and 15%, respectively. The
CBV seems to be the least affected by CS acceleration.

We believe the agreement on the DSC-MRI data is worse
than for DCE-MRI because the image resolution is lower
by a factor of three in each direction. A lower-resolution
anatomical image is less compressible under a gradient trans-
formation, so the CS reconstruction is less able to constrain
missing data. This is related to the so-called “blessing of high-
dimensionality” (see, e.g., [1]).

For this 642 data set, we used a 2× undersampling, prob-
ability distribution of |k|−0.5, and center window width of
6, so there are theoretically

(
64−6
32−6

)
= 2.2 × 1016 different

phase encode schemes possible. With 10 000 realizations of the
random phase encode schemes, the concern again is whether
this is a representative sample of the parameter space. Figure
7 shows the histograms of parameters from the first 1000
acquisition schemes from the full set of 10 000 shown in Fig. 6.
This was actually our initial experiment, but the bimodal
character of the histograms suggested that a larger sample was
needed. It is clear, however, by the similarity of Figs. 6 and
7 that the sample statistics are representative even with just
1000 data sets because the histograms are nearly identical for
all three parameters.
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Fig. 5. Model for CS systematic underestimation of DCE parameters. The
upper graph shows two theoretical DCE voxel time courses: one with Ktrans,
vp, and ve set to the mean from the full breast data set (labeled “Full”) and one
with those same parameters all decreased by 3% (labeled “CS”). The effect on
the voxel-intensity time course is slight. The lower graph compares the relative
intensity loss at each time point between the full and CS curves in the top
graph (labeled “CS Recon”) and the intensity loss if the voxel intensity were
underestimated linearly by the CS reconstruction (labeled “Linear Model”).
This linear intensity underestimation in the model assumes no intensity loss
pre-contrast and a linear increase in intensity loss that is a maximum at time
of peak contrast. The trend is similar to the intensity loss seen in the real CS
reconstruction, which is consistent with a contrast-dependent intensity loss,
but perhaps a nonlinear functional dependency.

IV. CONCLUSION

We have shown, for a large sample of different random CS
MRI acquisition schemes, the variance in derived quantitative
DCE- and DSC-MRI parameters. For DCE-MRI, with a bright
tumor on a dark background and a higher resolution (1922),
the variance in parameters derived from CS acquisitions was
small, but there was a systematic underestimation of 2.5%,
2.0%, and 3.7% on average for Ktrans, ve, and vp, respectively.
Compared to intra-patient test-retest variability [8], [12], the
variation due to random CS undersampling as measured by
CoVs was much smaller.

For the DSC-MRI data, with its 3× lower resolution (642)
and low contrast ROI, the parameter sets derived from the CS
acquisition are characterized by a high variance but smaller
error in tumor means of CBV, CBF, or MTT. The CBV was
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Fig. 6. Result of 10 000 different random simulated CS DSC-MRI acquisi-
tions. The 5–95% quantile in shown in gray, 25–75% in black, and the mean
by a vertical tick. The open diamonds on the tumor mean histograms show
the mean of the maps derived from the full data set.

the most robust to CS acceleration and had a CoV smaller than
that measured for intra-patient variability by the one test-retest
study we found [15].

It is encouraging that across the 11 000 different random
acquisition schemes examined here, there were no outliers in
the CCCs or means. This suggests that it could be shown that,
despite the random nature of CS measurements, the recon-
structed data sets will have a predictable level of uncertainty.
Since we are presenting here a simplified CS reconstruction
scheme, we cannot predict the quantitative uncertainty level for
a particular CS-accelerated DCE-MRI protocol, but we believe
that the qualitative features of our approach are generic. Here
we wish only to introduce a validation procedure for CS-
accelerated quantitative MRI methods.

Several factors will influence the exact results from clin-
ically practical, prospectively acquired CS-accelerated se-
quences. First, temporal regularization (e.g. [4], [9], [14], [22])
coupled with a time-varying undersampling pattern will likely
be used. Temporal constraints, such as a temporal gradient
or temporal Fourier transform serve to increase the sparsity
of the reconstructed images, and the probability of recovering
the correct sparse signal has been proven [2] to depend on
the signal sparsity and number of measurements. A similar
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Fig. 7. Result of the first 1000 simulated CS DSC-MRI acquisitions from
Fig. 6. The 5–95% quantile in shown in gray, 25–75% in black, and the mean
by a vertical tick. The open diamonds on the tumor mean histograms show
the mean of the maps derived from the full data set. The distributions are
almost identical to those in Fig. 7, suggesting that the sample size is large
enough that the moments of the distributions have converged.

idea may hold for compressible signals as studied here, except
that rather than the probability of recovery depending on the
sparsity, the recovery error would depend on the compression
ratio. As an aside, the freedom to vary the undersampling
pattern in time increases the size of the search space, possibly
requiring more test reconstructions to explore the statistical
behavior of the random undersampling.

The second major change in going to a prospective CS-
accelerated acquisition is that the undersampled complex,
multi-coil data set will need to be reconstructed. Signal
inhomogeneities from individual coils reduce the sparsity of
the coil images under a gradient or wavelet transform, possibly
increasing reconstruction error, and the computational demand
of the reconstruction increases linearly with the number of re-
ceive channels. Here we used reconstructed magnitude images
because the scanner produced these without the need for us
implementing a compute-intensive multi-channel recon. Only
magnitude images were available from the MR scanner’s re-
constructor because the research DCE-MRI sequence acquired
a partial echo during readout to reduce scan time. This is a
common acceleration method that uses homodyne detection

[25] to complete k-space. Unfortunately, this method cannot
produce complex images, since the phase of the Fourier data
is accurately known for the lowest spatial frequencies only.

For this initial work, we chose to forgo temporal constraints
and a full parallel imaging reconstruction to make this primar-
ily exploratory work less computationally demanding. Taking
just a single slice of the imaging volume, as we’ve done here
for both datasets, we have 25 000 2-D images to reconstruct
for the DCE example and 1.2 million 2-D images for the DSC
example. Additionally, temporal regularizers would affect the
shape of the voxel time courses and introduce a confounding
factor into the variance into the derived quantitative parame-
ters. For this initial effort, we chose a limited reconstruction
problem that should capture the essential features of the issue
and allow a representative sampling of the search space. We
also kept the phase encode scheme constant in time because
we used purely spatial regularization; temporally varying the
undersampling scheme without temporal constraints would
add unnecessary variance.

We would like to remark here that understanding contrast
loss in CS reconstructed images will improve the prediction
of the error in derived quantitative parameters. If the effect of
Fourier undersampling coupled with a CS reconstruction could
be known completely in image space, the predicted errors in
derived quantitative maps will be straightforward to compute.

Finally, future studies should address whether CS changes
the number of enhancing voxels in DCE-MRI studies. This
measure can be used as a tumor size measurement, and,
depending on the optimization constraints used, the spatial
gradient shrinkage performed in CS MRI reconstructions can
threshold small gradients to zero, effectively squashing small
enhancements. This would decrease the number of enhancing
voxels and hence the apparent tumor size.
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